Jianzheng Liu, Jie Li, Weifeng Li. 2016. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View. *Scientific Report*. doi: 10.1038/srep32221.

Temporal Pattern of Fine Particulate Matter Time Series in Beijing

A Calendar View

Jianzheng Liu 刘建政

Email: <u>jzliu.100@gmail.com</u>
Web: http://www.jzliu.net/

Does PM_{2.5} concentration follows the a priori seasonal, or weekly patterns in Beijing?

Image courtesy of www.china.org.cn

北京PM_{2.5}真如一些研究中所表述 那樣有季節月份和周的變化規律 嗎?

1

1 Significance 研究的意義

Overly high fine particulate matter ($PM_{2.5}$) concentration in Beijing has become a new symbol of Beijing in addition to its figure as capital city in China.

"Capital of Smog" used to denote London 60 years ago now falls upon Beijing, posing a critical challenges to its sustainable development that leads to major public health

concerns.

Image courtesy: www.theweek.co.uk

Image courtesy: www.japantimes.co.jp

We need knowledge of PM_{2.5}.

Image courtesy of www.cbc.ca

Research Gaps

Current studies on temporal patterns of PM_{2.5} used a priori assumption that PM_{2.5} concentration follows seasonal, monthly or weekly patterns (Chen et al., 2015; Huang et al., 2015; Y. Wang, Ying, Hu, & Zhang, 2014; Zhang & Cao, 2015).

These studies tried to \mathbf{fit} the PM_{2.5} concentration to imposed seasonal or monthly or weekly patterns

(Huang et al., 2015)

the arbitrary seasonal division of variation in PM_{2.5} concentration may result in information loss and conceal potentially important insights.

The variation of PM_{2.5} concentration may vary on different time scales other than these predefined scales.

Purpose

• Instead of making arbitrary assumptions on weekly, monthly, and seasonal patterns, we prefers to let the data show itself on a daily basis through visualization (show the data in a calendar).

• To achieve that, we conduct two time-series cluster analysis to reveal the pattern of PM_{2.5} temporal variation in much more detail.

2

2 Data & Methodology 數據和研究方法

One-year ground level air quality monitoring data in 2014 from in 35 stations across Beijing

In the end, we have 365 time-series objects (lines) with 24 data points each to analyze.

To let the data show its own pattern instead of imposing predefined time scale,

we need to aggregate together time-series objects with similar variation patterns of PM_{2.5} concentration and separate those with dissimilar time series into different groups

Cluster Analysis

- Average-linkage agglomerative hierarchical clustering
- We use Euclidean distance to identify the level difference between PM_{2.5} time-series, Pearson's correlation-based distance to capture the shape difference between PM_{2.5} time-series.

3

3 Result 研究結果

Cluster result based on shape/trend

(Upper) the calendar plot based on shape difference

(Left) averaged PM_{2.5} variation curve

Interpretation

- THREE distinct variation patterns
- increasing pattern (S1) is most likely to be observed from January to March and from September to December. the maximum PM_{2.5} concentration of the day usually occurs at night.
- decreasing pattern can be observed in all months throughout the year (S2) and this pattern attains its minimum value in the afternoon.
- an inverted V pattern often take place from April to August (S3) and the maximum PM_{2.5} concentrations during these days usually peaks at noon.

Explanation to \$1 and \$2 patterns

Altitude (km)

appropries Surface warmed by sun

(a) Normal conditions

(b) Thermal inversion

When cold front arrives, high-speed wind associated with the cold front blows the pollution away and thus the $PM_{2.5}$ is decreasing; when cold front moves on, the $PM_{2.5}$ increases due to temperature inversion.

Explanation to 53 pattern

• S3 variation patterns in $PM_{2.5}$ concentration match human activities that usually peaks in the morning and afternoon during a full day.

• suggests from April to August (Summer), the weather conditions (e.g., cold front) weaken and human activities thus might have

stronger impact on PM_{2.5} variation.

Cluster result based on level difference

(Upper) the calendar plot based on level difference

(Left) averaged curve

Interpretation

- A majority of days in the year have an averaged PM_{2.5} concentration of ~50 μ g/m³ (L1 in Fig. 2b and Fig. 2d), a figure far from the WHO (25 μ g/m³) and USA air quality standards (15 μ g/m³).
- high averaged PM $_{2.5}$ concentration around 150 µg/m3 (L2 in Fig. 2b and Fig. 2d) are likely to occur in every month throughout the year.

Interpretation

- Extremely high PM_{2.5} concentration above 250 μg/m³ (L3, O1, O2, O3, O4, and O5) can be usually observed in January, February, March, October, November, and December.
- This finding is consistent with previous studies in that $PM_{2.5}$ concentration is generally the highest during winter and lowest during summer (Wang, Ying et al. 2014, Zhang and Cao 2015).

Are there seasonal and weekly patterns?

Seasonal patterns exist but they do not follow a strict temporal division.

No universal weekly variation pattern in PM_{2.5} concentration.

the arbitrary seasonal division of variation in $PM_{2.5}$ concentration may result in information loss and conceal potentially important insights.

Our study provides an informative and straightforward calendar visualization to look into $PM_{2.5}$ pattern.

4

4 Summary 要點

Contribution

- Offer an innovative and straightforward calendar visualization of daily PM_{2.5} concentration time-series in Beijing;
- Yields intuitive insights and Advance our understanding on Beijing's PM_{2.5} concentration;
- Brings in unique perspective and convincing detailed insights on $PM_{2.5}$ concentration.

• There are three distinct diurnal variation patterns for the PM_{2.5} time-series.

 No weekly patterns; seasonal patterns exist but they do not follow a strict temporal division.

• A majority of days in the year have an averaged PM_{2.5} concentration of around 50 μ g/m³, a figure far from the WHO (25 μ g/m³) and USA air quality standards (15 μ g/m³).

• High averaged PM $_{2.5}$ concentration around 150 µg/m 3 (L2 in Fig. 2b and Fig. 2d) are likely to occur in every month throughout the year.

Thank you!

www.jzliu.net